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Abstract- An efficient self-organizing neural fuzzy controller 
(SONFC) is designed to improve the transient stability of 
multimachine power systems. First, an artificial neural network 
(ANN)-based model is introduced for fuzzy logic control. The 
characteristic rules and their membership functions of fuzzy 
systems are represented as the processing nodes in the ANN 
model. With the excellent learning capability inherent in the 
ANN, the traditional heuristic fuzzy control rules and 
inputloutput fuzzy membership functions can be optimally 
tuned from training examples by the backpropagation learning 
algorithm. Considerable rule-matching times of the inference 
engine in the traditional fuzzy system can be saved. To illustrate 
the performance and usefulness of the SONFC, comparative 
studies with a bang-bang controller are performed on the 34- 
generator Taipower system with rather encouraging results. 
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1. INTRODUCTION 

Transient stability is one of the most important factors 
that should be studied in power system planning, operation, 
and extension. It is mainly concerned with a system's ability 
to remain in synchronization following a sudden and major 
disturbance such as a generator trip or line switching due to 
faults, or abrupt changes in load or generation powers. 
Modem power systems have placed increased emphasis on 
the development of effective control schemes to enhance 
transient stability. In the past, numerous investigations have 
been conducted to improve the transient stability of power 
systems, ranging from theoretical studies to advanced control 
devices [l-61. Means for transient stability control are 
usually of the nonlinear discontinuous type, such as 
generation dropping [ 11, dynamic braking [2-41, load 
shedding [5], etc. The conventional control approach most 
often requires a precise mathematical model of the controlled 
systems. However, for power systems in practice, since there 
exist parameter uncertainty problems in the plant modeling 
and large variations in the environmental conditions, the 
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conventional controllers often perform satisfactorily over a 
rather limited range of operation. 

Recently, artificial neural networks and fuzzy systems 
have been successfully applied to various control fields with 
rather promising results [7-101. The salient feature of these 
techniques that distinguish them from the traditional control 
approaches is that they provide a model-free description of 
the control systems. A fuzzy logic controller is a special type 
of knowledge-based controller, and it operates in a linguistic, 
rule-based manner. Its performance depends strongly on the 
control rules developed. Generally, designing a fuzzy control 
system always requires much trial-and-error effort in 
determining the fuzzy rules and the associated membership 
functions, thus making the design a time-consuming task. On 
the other hand, artificial neural networks that mimic the 
function of the brain in a simplified manner can be 
considered another candidate for intelligent control systems. 
The neural systems use a large number of numeric input- 
output samples to produce the mapping rules through 
learning. Learning from examples and dynamic adaptation 
are two major features of neural networks. However, the 
mapping rules in the neural network are not visible and are 
difficult to understand. 

In this paper, a self-organizing neural fuzzy controller 
(SONFC) is designed to enhance the transient stability of 
power systems. By the term self-organizing controller [ll- 
131, it is meant that the controller can create fuzzy control 
rules to control a plant by learning. First, the neural network- 
based model for fuzzy logic control [lo] is introduced. This 
model integrates the ideas of the fuzzy logic controller and 
neural network structure into an intelligent control system. In 
this ANN structure, the input and output nodes represent the 
input speed/acceleration states, and output control signal, 
respectively, and the nodes in the hidden layers function as 
membership functions and fuzzy rules. Initially, we set up 
the controller with a set of coarse fuzzy control rules that are 
based on a simple engineering knowledge concerning the 
controlled machine. Then, the fuzzy rules and inputloutput 
membership functions of the controller can be optimally 
tuned or adapted by the backpropagation learning algorithm 
according to the control credit that is evaluated by a 
performance index table. With the evolving symbiosis of 
ANN and fuzzy logic theory, the presented controller is 
shown to be robust, adaptive and capable of learning. In 
addition, it also has the advantages of efficient hardware 
usage, easy generalization, and fault tolerance [10,14]. To 
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2. PROBLEM FORMULATION 

2.1 Power System Model 

The system of equations that govem the power system 
dynamics of transient stability control are fiist described. An 
n-machine power system model including the effects of field 
flux decay, damper windings, the automatic voltage regulator 
(AVR), and the exciter conceming a center of inertia (COI) 
rotating reference frame is given below [15]: 

0. = (3. (1) 

(2) 

(3) 

(4) 

( 5 )  
(6) 

l l  

M . h . = P  . - p  . - % p  COI - Vi 

TioiE& = -E;i + (xdi  - x i i ) l d j  + Efdi 
T;,iEii = -E& - ( X  ’ - X’. )I  . 

T a1 ,V n . = -V, + KaiVej 

nu e’ MT 1 1  

41 41 41 

TeiEfdi = -(Sei + Kei ) E f d  + Vrli 
TfiVfi = - V f i  + ( K f i / T e j ) [ V , l i  -(Sei + K e i ) E f d ]  (’1 

subscript “i“ : relating to the i-th generator, 
E;, E; : d- and q-axis stator emfs, 
Efd : field applied voltage, 
Zd Z : d- and q-axis components of armature current, 
K,  : regulator gain, 
Ke : exciter constant related to self-excited field, 
Kf : regulator stabilizing circuit gain, 
M : inertia constant, 
Pm : mechanical power input, 
Pe : real power output, 
Pc01 : CO1 accelerating power, 
Se : exciter saturation function, 
Tio, Ti, : open circuit d- and q-axis time constants, 
T, : regulator amplifier time constant, 
Te : exciter time constant, 
Tf:  regulator stabilizing. circuit time constant, 
V ,  : regulator output voltage, 
Vf: output voltage of regulator stabilizing circuit, 
X X : d- and q-axis synchronous reactances, d q  
X i ,  X i  : d- and q-axis transient reactances, 
0i : rotor angle of generator i with respect to the COI, 
W i  : rotor speed of generator i with respect to the COI, 
o, : center of system speed. 

where 

4 

In (2), the term Ui represents additive real power control for 
the i-th generator, which is determined by the controller 
depending on the state of the generator. 

2.2 Transient Stability Control 

Following a major disturbance in a power system, the 
system may lose synchronization if proper control action is 

not taken. The rotor trajectories of the generators may fall 
apart into different coherent groups during the transient 
period, and the unstable generators tend to separate from the 
rest of the system. Therefore, the ultimate goal of transient 
stability control is to quickly transfer the unstable generator 
from its initial state to the post-fault equilibrium state under 
admissible control limits. The rotor speed of each generator 
must eventually follow the overall system to maintain 
stability. In other words, for a transient stable system, the 
target steady state of each generator after a disturbance must 
be prescribed by: 

for i=1,2, ..., n 
cSj ( t f )  = 0 

where W i ( t f )  and & ( t f )  denote the final states of rotor 
speed and acceleration of generator i, respectively. In a 
physical system, the control power U i ( t )  is usually 
constrained by: 

In practical applications, control power U i ( t )  can be 
implemented by a braking resistor [2,4] to consume transient 
surplus power, a fast valve to shed the mechanical power, or 
it may be implemented by a superconducting magnetic 
energy storage (SMES) unit 1161. 

3. THE SELF-ORGANIZING NEURAL FUZZY CONTROLLER 

The major difficulty in the design of a fuzzy controller 
arises from the determination of fuzzy rules and inpudoutput 
membership functions. Most approaches are based on 
studying a human-operated system or existing controller, and 
the membership functions and/or fuzzy rules are then 
modified when the design fails in the test. Therefore, it  
always requires a lot of trial-and error effort, thus making the 
design a time-consuming task. The recent direction of 
research is to design self-organizing fuzzy logic systems that 
have capability to create the control strategy by learning 
[12,13]. Basically, we will follow the ideas of the traditional 
self-organizing fuzzy logic system with significant 
modification. The structure of the proposed SONFC is a 
combination of both the neural network and fuzzy logic 
techniques. The fuzzy method proves a structural control 
framework to express the input-output relationship of the 
neural network, and the neural network can embed the salient 
features of computation power and learning capability into 
the fuzzy controller. 

3.1 Overall Structure 

The schematic structure of the proposed SONFC system 
is shown in Fig. 1. It consists of: (i) a performance index (PI) 
table as an instructor for learning the control strategy, (ii) a 
neural fuzzy controller (NFC) to control the plant, (iii) three 
scaling factors GS, GA, and GU to adjust the inpudoutput 
values of the controller into proper ranges, which are set at 1, 
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0.01, and 1, respectively, and (iv) a limiter to constrain the 
control action within admissible limits. Typical input 
variables for transient stability control, for example, are the 
rotor angle, angular speed, angular acceleration, etc. Since no 
prior information regarding the rotor angle at postfault 
equilibrium is known, the shaft speed and acceleration of the 
generator at each sampled time are employed as the input 
variables of the proposed controller. 

The implementation of the proposed control system 
mainly comprises two phases: the learning phase and 
operation phase. In the learning phase, the purpose is to tune 
the parameters of the NFC to achieve good control 
performance. The performance of the controller in each 
learning step is evaluated by a performance index (PI) table, 
from which a credit is assigned according to the deviation of 
the control response from the desired response. Then the 
membership functions and fuzzy rules of the fuzzy controller 
could be adapted on-line by the credit value using a 
supervised learning mechanism. When the performance of 
the NFC is reduced to a preset value, the learning process 
terminates. In the operation phase, the trained NFC is 
directly used to control the machine. 

FQ. 1. Schematic structure of the proposed control system. 

3.2 Topology of the neural fuzzy controller 

The proposed NFC is a multilayer neural network-based 
fuzzy controller. Its topology is shown in Fig. 2. The system 
has a total of five layers. Since two input variables and one 
output variable are employed in the present work, there are 
two nodes in layer 1 and one node in layer 5. Nodes in layer 
1 are input nodes that directly transmit input signals to the 
next layer. Layer 5 is the output layer. Nodes in layers 2 and 
4 are term nodes that act as membership functions to express 
the inputloutput fuzzy linguistic variables. A bell-shaped 
function, as shown in Fig. 3, is adopted to represent the 
membership function, in which the mean value m and the 
variance o will be adapted through the learning process. The 
fuzzy sets defined for the inputloutput variables are positive 
big (PB), positive medium (PM), positive small (PS), zero 
(ZE), negative small (NS), negative medium (NM), and 
negative big (NB), which are numbered in descending order 
in the term nodes. Hence, 14 nodes and 7 nodes are included 
in layers 2 and 4, respectively, to indicate the input/output 
linguistic variables. Each node of layer 3 is a rule node that 
represents one fuzzy control rule. In total, there are 49 nodes 
in layer 3 to form a fuzzy rule base for two linguistic input 

A 1  no. of nodes 

-T- 
Layer 5 
(output node) 

7 

49 

14 

2 

5; 6; 
Fig. 2. Topoio~y of the neural funy controller 

m X 

Flg. 3. Curve of bell shaped function. 

variables. Layer 3 links and layer 4 links define the 
preconditions and the consequences of the rule nodes, 
respectively. For each rule node, there are two fixed links 
from the input term nodes. Layer 4 links encircled in dotted 
line will be adjusted in response to varying control situations. 
By contrast, the links of layers 2 and 5 remain fixed between 
the inputloutput nodes and their corresponding term nodes. 
In short, the proposed SONFC can adjust the fuzzy control 
rules and their membership functions by modifying layer 4 
links and the parameters that represent the bell-shaped 
membership functions for each node in layers 2 and 4. In the 
following, special emphasis is placed on how to adapt these 
links and parameters through learning. As a convenience in 
notation, the following symbols are used to describe the 
functions of the nodes in each of the five layers: 

net:: the net input value to the i-th node in layer L, 
0: : the output value of the i-th node in layer L, 

m:, 0;: the mean and variance of the bell-shaped 
activation function of the i-th node in layer L, 

WG : the link that connects the output of the j-th node in 
layer 3 with the input to the i-th node in layer 4. 

b y e r  1: 

signals to the next layer. That is 
The nodes of this layer just directly transmit input 

b v e r  2: 
The nodes of this layer act as membership functions to 

express the terms of input linguistic variables. For a bell- 

. 
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shaped function, they are: 

for i=1,2, ..., 7 
for i=8,9,  ..., 14 

net: = {z 
,t2-m2 
-(I) 

@ = e (  fori=I,2, ..., 14 (12) 
Note that layer 2 links are all set to unity. 

Layer 3; 
The links in this layer are used to perform precondition 

matching of fuzzy rules. Thus, each node has two input 
values from layer 2. The correlation-minimum inference 
procedure [lo] is utilized here to determine the firing 
strengths of each rule. The output of nodes in this layer is 
determined by the fuzzy AND operation. Hence, the 
functions of the layer are given below: 

net; = min(O;, Of), i = 7(7- j ) +  (k- 7) 

oi =net; fori=1,2, ..., 49 
forj=I,2, ..., 7 ; k=8,9, ..., 14 

3 

The link weights in this layer are also set to unity. 

Laver 4; 
Each node of this layer performs the fuzzy OR operation 

to integrate the fired rules leading to the same output 
linguistic variable. Based on extensive simulations and an 
engineering knowledge concerning the dynamic nature of the 
generator, 15 heuristic fuzzy rules are designed, as shown in 
Fig. 4. For example, fuzzy.rule 7 indicates that if both the 
speed and acceleration of the machine are "positive big 'I, 

then a "positive big" deceleration control effort must be 
exerted by increasing Vi in (2). Also, fuzzy rule 25 means 
that if the generator is close to the equilibrium state, then no 
control action is taken by issuing a "ZE" signal. Hence, the 
initial link weights can be set according to the initial fuzzy 
rules. Taking rule 4 for example, only the weight that 
connects rule node 4 to the output term node "PB" is set at 
unity. Except for the weights predetermined from the initial 
rules, the rest of layer 4 links are all set to zero initially. As 
will be demonstrated in Sec. 4.2, starting with the good 
initial fuzzy control rules will provide much faster 
convergence in the learning phase. The functions of this 
layer are expressed as follows: 

speed 
NB NM NS ZE PS PM PB 

PB 

NM 
NB 

49 

j=I  
net: = c wij0j' 

0: = min(1, net: ) for i = 1,2,. . . ,7 (16) 
The link weight W;j in this layer expresses the probability of 
the j-th rule with the i-th output linguistic variable. 

L.WL2 
The node in this layer computes the control signal of the 

NFC. The output node together with layer 5 links act as a 
defuzzifier. The defuzzification aims at producing a 
nonfuzzy control action that best represents the possibility 
distribution of an inferred fuzzy control action. The center of 
area defuzzification scheme [17], in which the fuzzy centroid 
constitutes the controller output signal, can be simulated by 

net: = Emj 4 4 4  aj oj 
j = l  

net.' 0: = .+ 
a;0; 

j=I  

where m; and a; can be as viewed the center and width of 
the membership function. Hence the link weight in this layer 

4 4  is m j o j .  

3.3 Self-organizing Learning Algorithm 

The self-organizing controller should be able to evaluate 
its performance in order to adapt the controller strategy by 
modification of the fuzzy rules and their membership 
functions. For this purpose, a performance index (PI) table 
(meta rules) and its related lookup table, as shown in Fig. 5, 
are used to assess the status of the controlled plant, and take 
proper control actions accordingly to improve performance. 
The linguistic rules of the table can be read as: 

IF hi = PB and ii = NB, THEN PI = Z E  
ELSE ...... 

Note that the meta rules bear no relationship to the controlled 
plant; they are based on the control objective. The zero 
elements in the rule table are in the desired response regions, 
and the other regions indicate where the corrective control 
action needs to be taken. The output values of the PI table 
can be taken from its lookup table by traditional fuzzy logic 
theory or implemented by a trained neural network. The 
appropriate control action of the NFC could be modified by 
the credit value in each learning step, which measures the 
deviation of the actual response from the desired response. 
For the k-th learning step, the required change AU(k)  of the 
NFC can be defined as 

Fig. 4. Initial fuzzy rule maMx of the proposed SONFC. 

where PI[.] represents lookup values in the PI table, and < 
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(4 
-0.6 -0.3 -0.3 s y 0 . 3  .0.3 . 0.6 I 

(b) 
Fig. 5. Performance index table, (a) linguistic definition, (b) look up table 

is a learning constant, which is set at 0.005 in this study. The 
desired control action U d ( k )  of the NFC can be obtained by 

U d ( k )  = U ( k )  + AU(k)  (20) 

Then the optimal membership functions and fuzzy rules can 
be found by gradient-descent search techniques. Define the 
error function or energy function of the control system as 

The mean and variance of each output membership function 
are adapted by 

j = l  
for i=1,2, ..., 7 

m 
The error signal of each node is 

j = l  
for i=1,2, ..., 7 

The weights between the i-th output linguistic variable and j- 
th rule is updated by 

I 
2 

E = - (Ud ( k )  - U ( k ) ) 2  Wi ( k  + I )  = Wij ( k )  + ~ 6 f O ;  + AAWjj  (k) (28) 
(21) 

for i=1,2 ,..., 7; j=I,2 ,..., 49 

It is observed from (19) to (21) that minimization of the error 
function E corresponds to guiding the controlled plant into 
the desired response regions, where the error function 
reaches a local minimum. In the following, the generalized 
delta learning rule [ 141 is applied to solve the training task of 

notation, the generalized delta learning rule can be expressed 
as j = l  

Laver 3; 
No parameter needs to be adjusted in this layer, and only 

the error signal needs to be computed and propagated 
backward. That is, 

the NFC to achieve the energy minimization. In standard 7 
6; = CW-64 (29) Y J  

(22) J-. 
aE 
aXi 

wherexi is the parameter to be updated, and q and A are 
the learning rate and the gain of the momentum term, which 
are set to 0.2 and 0.8, respectively. The error signal term 6: 

Xi(k + 1) = Xi(k )  + q(--) + AAXi(k) 
The mean and variance of the input membership 

functions can be updated by 

m,?(k + I) = m,?(k)- q- + aAm.,2(k) (30) ~ I E  o? 2(0f - mf ) 
30; ' (d)2 

called delta produced by the i-th neuron in layer L is defined 
as 

aE 2 2(of-q2)2 + d o , ? ( k )  (31) Si L (k)=-- dE (23) o f ( k + l ) = d ( k ) - V T O i  do, (0: j3 
anet: 

for i=1,2, ..., 14 Using (22) and (23), the learning rules of each layer x e  
derived below: It should be noted that the function of layer 1 is only to 

distribute the input signal, and hence it is not involved in the 
learning process. The links connecting layers 4 and 3 can be 
deleted when the weight is negligibly small or equals zero 
after learning because it means that this rule node has little or 

Lwck 
The error signal of the output node is 

6; = ( U d ( k ) - U ( k ) )  (24) no relationship to the output linguistic variable. 
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4. SIMULATION RESULTS 

4.1 Test Condition 

The proposed method was tested on the Taipower 
system, a practical medium-sized system in Taiwan. This 
system has a longitudinal structure covering a distance of 
400 KM from north to south. It consists of 191 buses, 34 
generators, and 234 transmission lines. The one-line diagram 
is shown in Fig. 6. The disturbance is a three-phase short 
circuit fault with various clearing times. Unless otherwise 
stated, the controller is installed for only one particular 
generator with the others uncontrolled in the test cases. The 
lower limit Uimin and upper limit U i m m  of control power 
are set between -0.5Pim and OSPim, respectively. The delay 
time involved in the practical implementation is assumed 5 
cycles in all simulations to complete the control procedure, 
including fault detection, telecommunication time, and 
computation time required for transient stability control [NI. 
To evaluate the performance of various controllers 
employed, a quadratic performance index J is defined below: 

-- 
I 
I 
I 
I 
I 
I 

J = 6' G'dt 

I 78 1 1  

- 1  
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

In (32), tf (= 1.5 s in the study) denotes the final time of the 
study period. The sampling time of system measurements is 
set at 0.01 s, thus there has a total of 150 training pattems in 
each learning process. The rotor speed Gi , rotor acceleration 

G i ,  and the credit value AU issued by the performance 
index table at each sampling time constitute a training 
pattern. Digital simulations with a bang-bang controller 
previously reported in [3] are also conducted for comparison. 

4.2 Illustrative Examples 

To demonstrate the learning capability and the 
applicability of the proposed controller, several experimental 
simulations coded in "FORTRAN" language were run on a 
VAX-6440 computer. 

. .  mple I ( k a r n i w  
To show the learning capability of the proposed 

SONFC, consider a particular three-phase fault at bus #170 
with the fault cleared at 0.15 s. In this case, generator G13 is 
the most severely disturbed unit. Fig. 7(a) shows the curve of 
the performance index with respect to the number of epochs. 
It indicates that only 50 epochs are required to meet the 
performance criterion. The fast learning time is due to the 
fact that the priori knowledge of the controller is 
incorporated into the training. Fig. 7(b) shows the dynamic 
responses of controlled generator GI3 between the first and 
last run of learning process. Results obtained apparently 
show that the control performance can be significantly 
improved through the learning process. Fig. 8 and Fig. 9 
show the membership functions of the input and output 
linguistic variables, before and after the supervised learning 
process. Obviously, some of the membership functions have 
been largely modified in appearance. Fig. 10 shows the final 
fuzzy rules of the SONFC after the supervised learning 
process. It is obvious that the proposed SONFC has 
automatically created thirteen new fuzzy rules. 

5 
7 E 4.5 

e 4  - a 3.5 

5 3  

$ 2  
2.5 

8 1.5 ---:-_1 10 20 Epochs 

nocontrol - - -  first run - lastrun I 
U 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
- 2 0 4 . .  , , .  . . . " " _ .  ' 

Time (s) 

Fig. 7. Learning results of the proposed SONFC: (a) learning pattern, 
(b) 

(b) dynamic responses of generator G13. 
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1 -  

0.5 

1.5 
NB NM NS ZE PS PM PB I 

- 

150 % loading 
100 % loading 
50 % loading 

L 

9 -2 

Time (s) 

fault cleared at 0.15 s 
fault cleared at 0.10 s 

L O  

0 0.2 0.4 0.6 0.8 1.2 1.4 
Time (s) 
(b) 

Fig. 11. Dynamic res nses of generator GI3  with (a) different loading 
conditions, (cdifferent fault clearning times. 

1 -  

0.5 

NB NM NS ZE PS PM PB 1.3 

Acceleration 1.5 
NB NMNS ZE PSPM PB 

" - 1  NB NM NS ZE PS PM PB I 

" " 1  NB NM NS ZE PS PM PB I 

I NB NMNS ZEPSPM PB I 

Fig. 9. learned membership functions of the proposed SONFC 

5 

2 

P e - m 

Fig. 10 

PM 
Ps 
ZE 
NS 
NM 

NB 

. Leared fuzzy rule matrix of the proposed SONFC 

ExamDle 2 ( Robustness re& 
To test the robustness of the trained SONFC concerning 

a wide range of operating conditions, consider a three-phase 
fault at bus #170. The dynamic responses of generator G13 
are shown in Fig. 11, where Fig. l l(a) depicts the dynamic 
responses with the loading varied from 50% to 150% and the 
fault cleared at 0.1 s, and Fig. ll(b) with the fault cleared at 
0.1, 0.15, and 0.2 s and 100% loading. Noticeably, although 
the SONFC was trained from past control trends, it is still 
capable of yielding satisfactory transient responses for a 
large alternation concerning loading and operation 
conditions. The rotor trajectories can be quickly recovered to 
the steady state in less than 0.6 s. 

le 3 (Pejormace  C o m v a r d  
To compare the control performance of the proposed 

SONFC and the bang-bang controller [3], a comprehensive 

test including different fault locations and disturbances in the 
Taipower system has been performed. The controlled 
generators involved in the simulation studies are of different 
dynamic characteristics. The partial results of the test are 
shown in Table I. Note that the proposed SONFC can 
consistently provide better dynamic performance than the 
bang-bang controller. For example, consider a three-phase 
fault occurring at bus #2 with the fault cleared at 0.1s. The 
sample responses of generator G2 with various controllers 
are shown in Fig. 12, where curve "NC" is with no control, 

TABLE I 
COMPARISON OF PERFORMANCE INDEX WITH VARIOUS 

CONTROLLERS 

1.4 
1.2 - 

E 0.: 
9 0.6 

0.4 : 0.2 
s o  rp -0.2 

-0.4 

Fig. 

NC 
BBC 

- SONFC 

_ _  

1 . , , : .  , , , , ,- . . ' .  , I \ /  '-' \ '  
'-'I 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

12. Cynamic responses of generator G2 with various controllers. 
Time (s) 

curve "BBC" is witli the bang-bang controller, and curve 
"SONFC" is with the proposed self-organizing neural fuzzy 
controller. With no control action, the system is unstable as 
indicated in curve "NC". In comparison with the bang-bang 
controller, the proposed SONFC can yield a better dynamic 
response with less overshoot and shorter settling time. 

EllamDk 4 (Cooperation characteristic) 
The purpose of this example is to illustrate the 
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4 -  
9 3 -  v 

1 k -1 ! - 

cooperation characteristic of the proposed controller. 
Consider a particular fault occurring at bus #20 with line 
switching (#20-#59) at 0.1 s. Fig. 13 (a) and (b) show the 
dynamic responses of rotor trajectories of G29 and G30 with 
the proposed controller installed on the latter and both units, 
respectively. The response curves reveal that the two 
controllers cooperate with each other very well in their 
efforts to damp out system oscillations under large 
disturbance conditions. In addition, even when only 
generator G30 is equipped with a SONFC, generator G29 
can also benefit from the control action of G29. 

no control 
with SONFC on G30 - with SONFC on G29 and G30 

- -  

, --_ -- .---- 
, !A\\, / ---_ 

0 ' 012 0.4 0.6 0.8 1 1.2 1.4 
L b j  

Time (s) 

'.-.' 
0 ' 0:2 0.4 0.6 0.8 1 1.2 1.4 

E :; i 
Time (s) 
(b) 

Fig. 13. Dynamic r e s p 0 - w ~  with SONFC on both generators: (a) rotor 
speed of G29. (b) rotor speed of G30. 

CONCLUSIONS 

This paper has designed an efficient self-organizing 
neural fuzzy controller (SONFC) to improve the transient 
stability of power systems. The basic control scheme is 
developed by the fuzzy logic theory, and implemented with a 
multilayer neural network. The fuzzy control rules and their 
membership functions can be optimally tuned from training 
examples by the backpropagation learning algorithm. As a 
result of the evolving symbiosis of these new techniques, the 
SONFC can prove to be more adaptive and robust in 
responding to a wide range of operating conditions. In 
addition, the rule-matching time in traditional fuzzy logic 
systems can also be saved. From the experimental results on 
the study system, several interesting and important 
observations can be deduced as follows: 

(i) Starting with a set of coarse fuzzy control rules, the 
proposed SONFC can automatically adjust the fuzzy 
control rules and their membership functions using 
its learning capability to achieve fairly good damping 
characteristics. 

(ii) The proposed SONFC can effectively control the 
transients over a wide range of operating conditions 
and yield better dynamic performance than the bang- 
bang controller. 

(iii) The proposed SONFC is a model-free controller, and 
it can be applied to generators of various dynamic 
natures. 

(iv) It can cooperate with other controllers of the same 
type, i.e., SONFC, to damp out system oscillations 
under disturbance conditions. 
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Discussion 

A. Hariri and 0. P. Malik (The University of Calgary, 
Calgary, Alberta, Canada): 

The authors have presented an interesting approach to 
the design of a fuzzy controller using neural network topology 
to represent the various aspects of fuzzy logic based device. 
The discussors would appreciate authors' comments on the 
following points: 
(i) It appears that the proposed controller involves two 

processing phases. In phase one, the learning phase, the 
parameters of the controller are adjusted for the desired 
output. In operation phase, after the learning phase is 
completed, the controller is used to control the system. 
In this phase, the controller parameters are kept 
constant and do not change with changes in the system 
operating conditions. Will the authors elaborate on how 
the controller, once trained, exhibits "dynamic 
adaptation" as stated in the Introduction. 

The centres of the bell-shaped membership functions for 
the inputs and the output are determined by the learning 
processing, and therefore, it seems that the scaling 
factors, GS, GA and GU, are not necessary for this kind 
of neuro-fuzzy controller. 

The scaling factors can be used for normalizing the 
universe of discourse, which in turn requires that all 
membership functions in Fig 8 be between -1 and + 1. 

Will the authors elaborate on how the proposed 
performance index table in Fig. 5 has been set up and 
the criteria on which the learning constantvalue of 0.005 
was arrived at? 

(ii) 

(iii) 

(iv) As this paper is devoted to the transient stability of 
multimachine power systems, have the authors 
investigated the performance of the proposed controller 
in the presence of multi-modal oscillations exhibited in 
multi-machine power systems? 

Manuscript received August 22, 1994. 

H. C. Chang and M. H. Wang: The authors would like to 
thank the discussers for their interests in the paper and their 
insightful questions about the application of the neural 
network-based fuzzy controller to power system transient 
stability. 

The conventional fuzzy control rules are rigid in the sense 
that once the fuzzy rules are developed at the design stage, 
they will not be modified in the course of controller operation 
until further refinement is necessary. Therefore, with the fixed 
set of fuzzy control rules, the fuzzy controller may perform 
rather poorly when large load disturbances or sudden 
parameter variations of the plant that are not foreseen at the 
design stage occur. By the term "dynamic adaptation" as stated 
in the Introduction, we emphasize that the neural network- 
based fuzzy controller is able to tune the control rules and 
membership functions dynamically in the learning phase. 
Therefore, after the proposed controller has been trained, it is 
used to control the system. If the performance of the controller 
is not satisfactory when drastic changes in the system 
operating conditions occur, a new training session must be 
initiated. 

Indeed, the centers of the bell-shaped membership 
functions for the inputs and the output can be determined 
through the learning process. Since the physical input 
variables differ widely in values, our intention for the 
introduction of the scaling factors is to adjust the inputs and 
output of the controller into proper ranges so that the 
convergence of the learning process can be significantly 
improved. 

The meta rules shown in Fig. 5 are based on our previous 
experience with the design of a transient stability controller. It 
is strongly motivated by the close analogy between Eqs. (1)- 
(2) and a spring-mass system. Compared with the mechanical 
analogy, 8 corresponds to a displacement, the terms in the 
right-hand side of Eq. (2) except for Ui a nonlinear spring 
force, and Ui an applied retarding force. The ultimate control 
goal of transient stability is equivalent to quickly recovering 
the mass to the equilibrium point by applying an appropriate 
control force. Towards this goal, the linguistic rules are 
established by a simple engineering appreciation of the system 
behavior. This fact is evidenced by the resultant simple 
structure of the performance index table. To achieve good 
results, extensive simulations must be followed to justify the 
usefulness of the developed meta rules. As to the learning 
constant value of 0.005, it is chosen experimentally for the 
problem being solved. There is no single optimum value for 
different training cases. 

The multi-modal oscillations are observed, in practice, 
with weakly interconnected power systems. They are 
characterized by local and inter-area modes. Since the input 
variables adopted are with respect to the center of inertia 
reference frame, the composite mode of electromechanical 
rotor oscillations can be damped out efficiently. Our 
experiences for various simulation scenarios revealed that the 
proposed controller can provide good damping characteristics 
in the presence of multi-modal oscillations. 

Manuscript received October 25, 1994. 
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